\qquad

8.4 Practice A

In Exercises 1 and 2, identify the amplitude and period of the graph of the function.
1.

2.

In Exercises 3-6, identify the amplitude and period of the function. Then graph the function and describe the graph of g as a transformation of the graph of its parent function.
3. $g(x)=2 \sin x$
4. $g(x)=4 \cos x$
5. $g(x)=\sin 2 x$
6. $g(x)=3 \cos \pi x$
7. Which functions have an amplitude of 2 and a period of π ?
A. $y=2 \sin 2 x$
B. $y=-2 \cos \pi x$
C. $y=4 \sin 2 x$
D. $y=-2 \cos 2 x$
8. The motion of a pendulum can be modeled by the function $d=3 \cos 6 \pi t$, where d is the horizontal displacement (in inches) of the pendulum relative to its position at rest and t is the time (in seconds). Find and interpret the period and amplitude in the context of this situation. Then graph the function.

In Exercises 9-12, graph the function.
9. $g(x)=\sin x-3$
10. $g(x)=\cos \left(x+\frac{\pi}{2}\right)$
11. $g(x)=2 \sin x+1$
12. $g(x)=\cos 2(x+\pi)$

In Exercises 13 and 14, write a rule for g that represents the indicated transformations of the graph of f.
13. $f(x)=2 \cos x$; translation 4 units down and π units left
14. $f(x)=\sin 4 x$; translation 1 unit up and 2 units right

