7.5 Practice B

In Exercises 1–6, write the first six terms of the sequence.

1.
$$a_1 = 1$$
 $a_n = a_{n-1} + 9$

3.
$$f(0) = 24$$

 $f(n) = \frac{3}{2}f(n-1)$

5.
$$f(0) = 1$$
, $f(1) = 4$
 $f(n) = f(n-2) - f(n-1)$

2.
$$f(0) = 32$$

 $f(n) = \frac{1}{4}f(n-1)$

4.
$$a_1 = 1$$
 $a_n = (a_{n-1})^2 - 1$

6.
$$f(1) = 256$$
, $f(2) = 2$
$$f(n) = \frac{f(n-2)}{f(n-1)}$$

In Exercises 7–14, write a recursive rule for the sequence.

9. 28, 4,
$$\frac{4}{7}$$
, $\frac{4}{49}$, $\frac{4}{343}$, ...

In Exercises 15–20, write a recursive rule for the sequence.

15.
$$a_n = -7 + 3n$$

17.
$$a_n = -16(9)^{n-1}$$

19.
$$a_n = -\frac{1}{3} \left(\frac{1}{5}\right)^{n-1}$$

16.
$$a_n = 6(15)^{n-1}$$

18.
$$a_n = -2.4 + 0.3n$$

20.
$$a_n = \frac{1}{2}(7)^{n-1}$$

21. The rate of growth of an organism is given by the explicit rule $a_n = 26(1.002)^{n-1}$, where *n* is the number of hours in an incubator. Write a recursive rule for the rate of growth of the organism.

In Exercises 22–25, write an explicit rule for the sequence.

22.
$$a_1 = -19$$
, $a_n = a_{n-1} + 7.2$

24.
$$a_1 = 4$$
, $a_n = a_{n-1} + \frac{1}{6}$

23.
$$a_1 = -7$$
, $a_n = 0.45a_{n-1}$

25.
$$a_1 = -9$$
, $a_n = \frac{1}{3}a_{n-1}$