\qquad

7.4 Practice B

In Exercises 1 and 2, consider the infinite geometric series. Find the partial sums S_{n} for $n=1,2,3,4$, and 5 . Then describe what happens to S_{n} as n increases.

1. $\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\ldots$
2. $6+4+\frac{8}{3}+\frac{16}{9}+\frac{32}{27}+\ldots$

In Exercises 3-6, find the sum of the infinite geometric series, if it exists.

3. $\sum_{n=1}^{\infty} \frac{5}{3}\left(\frac{3}{4}\right)^{n-1}$
4. $\sum_{n=1}^{\infty} \frac{3}{7}\left(\frac{7}{2}\right)^{n-1}$
5. $8-10+\frac{25}{2}-\frac{125}{4}+\ldots$
6. $\frac{1}{5}+\frac{2}{15}+\frac{4}{45}+\frac{8}{135}+\ldots$
7. Describe and correct the error in finding the sum of the infinite geometric series.

$$
\begin{aligned}
& X \sum_{n=1}^{\infty} \frac{5}{2}\left(\frac{1}{3}\right)^{n-1} \\
& \text { For this series, } a_{1}=\frac{5}{2} \text { and } r=\frac{1}{3} . \\
& \quad S=\frac{a_{1}}{1-r}=\frac{\frac{5}{2}}{\frac{1}{3}}=\frac{5}{2} \bullet \frac{3}{1}=\frac{15}{2}
\end{aligned}
$$

8. You are going for a 4-mile run. You know that you can run half the distance, and you successfully run 2 miles. There are 2 miles to go, and you know that you can run half that distance. You successfully run that next mile. Now there is 1 mile to go, and you know that you can run half that distance. You successfully run that next half mile. This process continues. Will you cover the 4 miles over the course of your run? Explain your answer.

In Exercises 9-11, write the repeating decimal as a fraction in simplest form.
9. $0.45454545 \ldots$
10. $0.05050505 \ldots$
11. 1.4444...
12. A radio station has a daily contest in which a random listener is asked a trivia question. On the first day, the station gives $\$ 300$ to the first listener who answers correctly. On each successive day, the winner receives 95% of the winnings from the previous day. What is the total amount of prize money the radio station gives away during the contest?

