7.3 Practice B

In Exercises 1-4, tell whether the sequence is geometric. Explain your reasoning.

4.
$$\frac{5}{3}$$
, $\frac{10}{3}$, $\frac{20}{3}$, $\frac{40}{3}$, $\frac{80}{3}$, ...

5. Write a rule for the geometric sequence with the given description.

a. The first term is -12, and each term is 7 times the previous term.

b. The first term is 62, and each term is $\frac{1}{2}$ times the previous term.

In Exercises 6–9, write a rule for the nth term of the sequence. Then find a_7 .

7. 80, 20, 5,
$$\frac{5}{4}$$
, ...

8. 3,
$$\frac{6}{5}$$
, $\frac{12}{25}$, $\frac{24}{125}$, ...

In Exercises 10–13, write a rule for the *n*th term of the sequence. Then graph the first six terms of the sequence.

10.
$$a_3 = 50, r = 5$$

11.
$$a_2 = 18, r = \frac{1}{3}$$

12.
$$a_4 = -378, r = 3$$

13.
$$a_5 = 1$$
, $r = -\frac{1}{4}$

14. Describe and correct the error in writing a rule for the *n*th term of the geometric sequence for which $a_3 = 147$, r = 7.

15. You are buying a new boat. You take out a 5-year loan for \$20,000. The annual interest rate of the loan is 4%. You can calculate the monthly payment M (in dollars) for a loan using the formula $M = \frac{L}{\sum_{k=1}^{t} \left(\frac{1}{1+i}\right)^k}$, where L is the loan

amount (in dollars), i is the monthly interest rate (in decimal form), and t is the term (in months). Calculate the monthly payment.