\qquad

7.3 Practice A

In Exercises 1-4, tell whether the sequence is geometric. Explain your reasoning.

1. $64,32,16,8,4, \ldots$
2. $88,66,44,22,0, \ldots$
3. $0.3,1.2,2.1,3,3.9, \ldots$
4. $0.8,4.8,28.8,172.8, \ldots$
5. Write a rule for the geometric sequence with the given description.
a. The first term is -5 , and each term is 3 times the previous term.
b. The first term is 54 , and each term is $\frac{1}{6}$ times the previous term.

In Exercises 6-9, write a rule for the nth term of the sequence. Then find a_{7}.
6. $3,6,12,24, \ldots$
7. $7,21,63,189, \ldots$
8. $192,96,48,24, \ldots$
9. $36,24,16, \frac{32}{3}, \ldots$

In Exercises 10-13, write a rule for the nth term of the sequence. Then graph

 the first six terms of the sequence.10. $a_{3}=9, r=3$
11. $a_{2}=12, r=4$
12. $a_{4}=5, r=\frac{1}{2}$
13. $a_{5}=-208, r=2$
14. Describe and correct the error in writing a rule for the nth term of the geometric sequence for which $a_{3}=147, r=7$.

$$
\begin{aligned}
a_{n} & =r a_{1}^{n-1} \\
147 & =7 a_{1}^{2} \\
21 & =a_{1}^{2} \\
\sqrt{21} & =a_{1} \\
a_{n} & =7 \sqrt{21}^{n-1}
\end{aligned}
$$

15. You are buying a new car. You take out a 3 -year loan for $\$ 10,000$. The annual interest rate of the loan is 6%. You can calculate the monthly payment M (in dollars) for a loan using the formula $M=\frac{L}{t}$, where L is the

$$
\sum_{k=1}^{t}\left(\frac{1}{1+i}\right)^{k}
$$

loan amount (in dollars), i is the monthly interest rate (in decimal form), and t is the term (in months). Calculate the monthly payment.

