7.3

Practice A

In Exercises 1–4, tell whether the sequence is geometric. Explain your reasoning.

- **1.** 64, 32, 16, 8, 4, ... **2.** 88, 66, 44, 22, 0, ...
- **3.** 0.3, 1.2, 2.1, 3, 3.9, ... **4.** 0.8, 4.8, 28.8, 172.8, ...
- **5.** Write a rule for the geometric sequence with the given description.
 - **a.** The first term is -5, and each term is 3 times the previous term.
 - **b.** The first term is 54, and each term is $\frac{1}{6}$ times the previous term.

In Exercises 6–9, write a rule for the *n*th term of the sequence. Then find a_7 .

6. 3, 6, 12, 24, ...**7.** 7, 21, 63, 189, ...**8.** 192, 96, 48, 24, ...**9.** 36, 24, 16, $\frac{32}{3}$, ...

In Exercises 10–13, write a rule for the *n*th term of the sequence. Then graph the first six terms of the sequence.

- **10.** $a_3 = 9, r = 3$ **11.** $a_2 = 12, r = 4$
 12. $a_4 = 5, r = \frac{1}{2}$ **13.** $a_5 = -208, r = 2$
- 14. Describe and correct the error in writing a rule for the *n*th term of the geometric sequence for which $a_3 = 147$, r = 7.

$$\begin{array}{rcl}
& a_n = ra_1^{n-1} \\
& 147 = 7a_1^2 \\
& 21 = a_1^2 \\
& \sqrt{21} = a_1 \\
& a_n = 7\sqrt{21}^{n-1}
\end{array}$$

15. You are buying a new car. You take out a 3-year loan for \$10,000. The annual interest rate of the loan is 6%. You can calculate the monthly payment M (in dollars) for a loan using the formula $M = \frac{L}{\sum_{k=1}^{t} \left(\frac{1}{1+i}\right)^{k}}$, where L is the

loan amount (in dollars), i is the monthly interest rate (in decimal form), and t is the term (in months). Calculate the monthly payment.