7.2

Practice B

In Exercises 1–4, tell whether the sequence is arithmetic. Explain your reasoning.

- **1.** 100, 50, 25, 12.5, 6.25, ... **2.** 0, -4, -8, -12, -16, ...
- **3.** $\frac{1}{6}$, $\frac{1}{3}$, $\frac{1}{2}$, $\frac{2}{3}$, $\frac{5}{6}$, ... **4.** $\frac{3}{10}$, $\frac{3}{5}$, $\frac{9}{10}$, $\frac{6}{5}$, $\frac{3}{2}$, ...
- 5. Write a rule for the arithmetic sequence with the given description.
 - **a.** The first term is 12 and each term is 7 less than the previous term.
 - **b.** The first term is -8 and each term is 10 more than the previous term.

In Exercises 6–9, write a rule for the *n*th term of the sequence. Then find a_{20} .

- **6.** 37, 29, 21, 13, ... **7.** -4, $-\frac{8}{3}$, $-\frac{4}{3}$, 0, ... **8.** 0.2, 2.3, 4.4, 6.5, ... **9.** 2.2, 1.5, 0.8, 0.1, ...
- **10.** Describe and correct the error in writing a rule for the *n*th term of the arithmetic sequence -27, -12, 3, 18, 33,

 $\bigvee \text{ Use } a_1 = -27 \text{ and } d = 15.$ $a_n = a_1 - (n-1)d$ $a_n = -27 - (n-1)15$ $a_n = -12 - 15n$

In Exercises 11 and 12, write a rule for the *n*th term of the sequence. Then graph the first six terms of the sequence.

11. $a_{23} = 107, d = 4$ **12.** $a_{13} = 12, d = \frac{1}{2}$

In Exercises 13–16, write a rule for the *n*th term of the sequence.

- **13.** $a_4 = 44, a_9 = 69$ **14.** $a_9 = -73, a_{14} = -158$
 15. $a_{15} = 63, a_{21} = 99$ **16.** $a_{15} = 28, a_{24} = 34$
- 17. Find the sum of the positive odd integers less than 500. Explain your reasoning.