\qquad

2.5 Practice B

In Exercises 1-6, describe the transformation of $f(x)=x^{2}$ represented by g.
Then graph each function.

1. $g(x)=x^{2}+3$
2. $g(x)=(x+5)^{2}$
3. $g(x)=(x+6)^{2}-4$
4. $g(x)=(x-1)^{2}+5$
5. $g(x)=(x-4)^{2}+3$
6. $g(x)=(x+8)^{2}-2$

In Exercises 7-9, describe the transformation of $f(x)=x^{2}$ represented by g.

Then graph each function.

7. $g(x)=-\left(\frac{1}{2} x\right)^{2}$
8. $g(x)=\frac{1}{3} x^{2}+2$
9. $g(x)=\frac{1}{3}(x+1)^{2}$

In Exercises 10 and 11, describe the transformation of the graph of the parent quadratic function. Then identify the vertex.
10. $f(x)=-3(x+6)^{2}-4$
11. $f(x)=\frac{1}{3}(x-2)^{2}+1$

In Exercises 12 and 13, write a rule for g described by the transformations of the graph of f. Then identify the vertex.
12. $f(x)=x^{2}$; vertical shrink by a factor of $\frac{1}{2}$ and a reflection in the y-axis, followed by a translation 2 units left
13. $f(x)=(x+4)^{2}+2$; horizontal shrink by a factor of $\frac{1}{3}$ and a translation 2 units up, followed by a reflection in the x-axis
14. Justify each step in writing a function g based on the transformations of $f(x)=4 x^{2}-3 x$.
translation 3 units up followed by a reflection in the y-axis

$h(x)=f(x)+3$	
$=4 x^{2}-3 x+3$	
$g(x)=h(-x)$	
$=4 x^{2}+3 x+3$	

