2.5 Practice B

In Exercises 1–6, describe the transformation of $f(x) = x^2$ represented by *g*. Then graph each function.

1. $g(x) = x^2 + 3$ **2.** $g(x) = (x + 5)^2$ **3.** $g(x) = (x + 6)^2 - 4$ **4.** $g(x) = (x - 1)^2 + 5$ **5.** $g(x) = (x - 4)^2 + 3$ **6.** $g(x) = (x + 8)^2 - 2$

In Exercises 7–9, describe the transformation of $f(x) = x^2$ represented by *g*. Then graph each function.

7. $g(x) = -\left(\frac{1}{2}x\right)^2$ **8.** $g(x) = \frac{1}{3}x^2 + 2$ **9.** $g(x) = \frac{1}{3}(x+1)^2$

In Exercises 10 and 11, describe the transformation of the graph of the parent quadratic function. Then identify the vertex.

10. $f(x) = -3(x+6)^2 - 4$ **11.** $f(x) = \frac{1}{3}(x-2)^2 + 1$

In Exercises 12 and 13, write a rule for *g* described by the transformations of the graph of *f*. Then identify the vertex.

- **12.** $f(x) = x^2$; vertical shrink by a factor of $\frac{1}{2}$ and a reflection in the *y*-axis, followed by a translation 2 units left
- **13.** $f(x) = (x + 4)^2 + 2$; horizontal shrink by a factor of $\frac{1}{3}$ and a translation 2 units up, followed by a reflection in the *x*-axis
- 14. Justify each step in writing a function g based on the transformations of $f(x) = 4x^2 3x$.

translation 3 units up followed by a reflection in the y-axis

h(x) = f(x) + 3	
$= 4x^2 - 3x + 3$	
g(x) = h(-x)	
$= 4x^2 + 3x + 3$	