Name

Graph the function. Compare the graph to the graph of $f(x) = x^2$.

56.
$$h(x) = 4x^2$$

57.
$$t(x) = 0.2x^2$$

57.
$$t(x) = 0.2x^2$$
 58. $n(x) = -\frac{2}{5}x^2$

59.
$$a(x) = -7x^2$$

59.
$$a(x) = -7x^2$$
 60. $r(x) = -0.625x^2$ **61.** $m(x) = \frac{1}{2}x^2$

61.
$$m(x) = \frac{1}{2}x^2$$

62.
$$g(x) = x^2 + 3$$

63.
$$h(x) = x^2 + 10$$

62.
$$g(x) = x^2 + 3$$
 63. $h(x) = x^2 + 10$ **64.** $p(x) = x^2 - 10$

65.
$$s(x) = -x^2 - 2$$

66.
$$p(x) = 4x^2 + 2$$

65.
$$s(x) = -x^2 - 2$$
 66. $p(x) = 4x^2 + 2$ **67.** $q(x) = -\frac{1}{5}x^2 - 5$

Find the zeroes of the function.

68.
$$y = x^2 - 4$$

69.
$$f(x) = -9x^2 + 36$$

69.
$$f(x) = -9x^2 + 36$$
 70. $f(x) = 50x^2 - 18$

- 71. The function $f(t) = -16t^2 + s_0$ represents the approximate height (in feet) of an object falling t seconds after it is dropped from an initial height s_0 (in feet). A watermelon is dropped from a height of 100 feet.
 - **a.** After how many seconds does the watermelon hit the ground?
 - **b.** Suppose the initial height is adjusted by k feet. How will this affect the answer for part (a)?

Find (a) the axis of symmetry and (b) the vertex of the graph of the function.

72.
$$y = -10x^2 - 40x - 9$$

73.
$$f(x) = 4x^2 - 24x - 30$$

Graph the function. Describe the domain and range.

74.
$$f(x) = -2x^2 - 16x + 9$$

75.
$$f(x) = -x^2 + 18x - 1$$

Tell whether the function has a minimum value or a maximum value. Then find the value.

76.
$$f(x) = -3x^2 - 24x + 5$$

77.
$$f(x) = 5x^2 + 40x - 14$$

78.
$$f(x) = -7x^2 + 28x - 10$$

79.
$$f(x) = 9x^2 - 36x + 21$$

Chapter **3**

Cumulative Review (continued)

Determine whether the function is even, odd, or neither.

80.
$$f(x) = 4x$$

81.
$$g(x) = x^2 + 5$$

82.
$$h(x) = 4x^2 + 8x - 5$$

Find the vertex and the axis of symmetry of the graph of the function.

83.
$$f(x) = \frac{1}{4}(x-2)^2$$

84.
$$g(x) = 3(x-1)^2$$

85.
$$h(x) = (x + 3)^2$$

86.
$$f(x) = -3(x-7)^2 - 8$$

87.
$$g(x) = 8(x+2)^2 + 9$$

Graph the function. Compare the graph to the graph of $f(x) = x^2$.

88.
$$f(x) = 2(x-3)^2$$

89.
$$f(x) = 4(x+1)^2 + 5$$

Graph the quadratic function.

90.
$$f(x) = 2(x-5)(x+1)$$

91.
$$y = -3(x+2)(x-7)$$

92.
$$f(x) = x^2 - 36$$

93.
$$h(x) = x^2 - 2x - 15$$

Find the zero(s) of the function.

94.
$$y = -3(x+7)(x-1)$$

95.
$$g(x) = x^2 + 15x + 26$$

96.
$$f(x) = (x+3)(x^2-9)$$

97.
$$h(x) = 2x^2 - 6x - 20$$

Tell whether the data represents a *linear*, an *exponential*, or a *quadratic* function. Then write the function.

99.
$$(-2, -5)$$
, $(-1, -8)$, $(0, -9)$, $(1, -8)$, $(2, -5)$