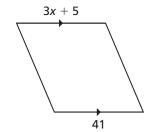

Practice A

In Exercises 1 and 2, state which theorem you can use to show that the quadrilateral is a parallelogram.

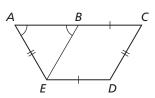

1.

In Exercises 3 and 4, find the value of x that makes the quadrilateral a parallelogram.

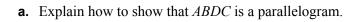
3.

4.

In Exercises 5 and 6, graph the quadrilateral with the given vertices in a coordinate plane. Then show that the quadrilateral is a parallelogram.

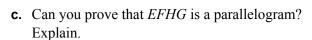

5.
$$A(-4, -2), B(-2, 1), C(4, 1), D(2, -2)$$

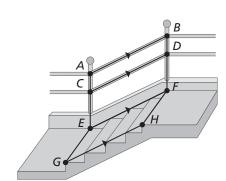
5.
$$A(-4, -2)$$
, $B(-2, 1)$, $C(4, 1)$, $D(2, -2)$ **6.** $E(-4, 1)$, $F(-1, 5)$, $G(11, 0)$, $H(8, -4)$


7. Use the diagram to write a two-column proof.

Given
$$\angle A \cong \angle ABE$$

 $\overline{AE} \cong \overline{CD}, \overline{BC} \cong \overline{DE}$


Prove *BCDE* is a parallelogram.


8. In the diagram of the handrail for a staircase shown, $m \angle A = 145^{\circ} \text{ and } \overline{AB} \cong \overline{CD}.$

b. Describe how to prove that *CDFE* is a parallelogram.

d. Find $m \angle ACD$, $m \angle DCE$, $m \angle CEF$, and $m \angle EFD$.

