5. a.

b. ____

6. a.

b.

С.

Chapter **Test B** 6

4

-8

12

16

Plot the points. Tell whether the points appear to represent a linear function, Answers an exponential function, or neither.

8

12

16

- 5. You deposit \$675 in a savings account that earns 6% interest compounded monthly.
 - **a.** Write a function that represents the balance after *t* years.
 - **b.** What is the balance after 3 years?
- 6. You work for a design company and want to enlarge one of your designs for a new billboard sign. You can enlarge the design by 120% every time you run the program. The original design is 12 inches wide by 24 inches long.
 - **a.** Write a function that represents the width after *t* times that you run the program.
 - **b.** How wide is the design after running the program five times?
 - **c.** How many times will you have to run the program for the design to be at least 150 feet wide?

6 Test B (continued)

Solve the equation. Check your solution.

7.
$$2 \cdot 4^{x+1} = \frac{1}{32}$$
 8. $25^x \cdot 5^{x+3} = 625^{x-7}$

Determine whether the table represents an *exponential growth function*, an *exponential decay function*, or *neither*.

9.	x	1	2	3	4
	y	2	-4	8	-16

10.	x	0	1	2	3
	y	81	27	9	3

Determine whether the sequence is *arithmetic*, *geometric*, or *neither*.

11. 1, 3, 6, 10, ...

12. -80, 40, -20, 10, ...

14. $\frac{1}{64}, \frac{1}{32}, \frac{1}{16}, \frac{1}{8}, \dots$

13. $\frac{2}{3}, \frac{1}{6}, -\frac{1}{3}, -\frac{5}{6}, \dots$

Write a recursive rule for the sequence.

15.	Position, <i>n</i>	1	2	3	
	Term, <i>a_n</i>	27	9	3	

16.	Position, <i>n</i>	1	2	3	4
	Term, <i>a_n</i>	-2	-3	-5	-9

17. The first two terms of a sequence are $a_1 = 2$ and $a_2 = -1$. Let a_3 be the third term when the sequence is arithmetic and let b_3 be the third term when the sequence is geometric. Find $2a_3 - b_3$.

Evaluate the function for the given value of *x*.

- **18.** $f(x) = \frac{1}{3}(4)^x$; x = -2 **19.** $f(x) = -2(\frac{1}{4})^x$; $x = \frac{1}{2}$
- **20.** The function $P(t) = 2000(1.5)^t$ represents the population of a small town.
 - **a.** Does the function represent exponential growth or exponential decay?
 - **b.** What is the yearly percent change in population?
 - **c.** What is the approximate monthly percent change?
 - **d.** How many people are living in the town after 3 years?

d.

Answers

7.	
8.	
9.	
14.	
18.	
20.	a
	b
	c