\qquad

Chapter
 Test A

Plot the points. Tell whether the points appear to represent a linear function, an exponential function, or neither.

1. $(-2,25),\left(1, \frac{1}{5}\right),(-1,5)$,
$(0,1),\left(2, \frac{1}{25}\right)$

2. $(-4,7),(1,2),(-3,6)$,
$(-2,5),(0,3)$

Graph the function. Describe the domain and range.

3. $y=-2(3)^{x}$

-			y			
-4	-2			2		$4 x$
		4				
		4				
		8				
		-12				
		-16				

4. $y=3(0.5)^{x}$

Solve the equation. Check your solution.
5. $3^{x}=\frac{1}{81}$
6. $25^{2 x-3}=125^{x+1}$
7. You deposit $\$ 500$ in a savings account that earns 7% interest compounded annually.
a. Write a function that represents the balance after t years.
b. What is the balance after 2 years?
8. You buy a used car for $\$ 6599$. Its value decreases by 12% every year.
a. Write a function that represents the value y (in dollars) of the car after t years.
b. What is the value of the car after 2.5 years?
c. What is the value of the car after 20 years?
d. According to the model, when will the value of the car be zero?
\qquad

Chapter
 Test $\mathbf{A}_{\text {(continued) }}$

Determine whether the table represents an exponential growth function, an exponential decay function, or neither.
9.

x	1	2	3	4
y	2	8	24	128

10.

x	0	1	2	3
y	40	20	10	5

Decide whether the sequence is arithmetic, geometric, or neither.
11. $2,4,6,8, \ldots$
12. $5,-10,20,-40, \ldots$
13. $4,9,16,25, \ldots$
14. $-64,-32,-16,-8, \ldots$

Write a recursive rule for the sequence.

15.

Position, \boldsymbol{n}	1	2	3
Term, $\boldsymbol{a}_{\boldsymbol{n}}$	25	10	-5

16.

Position, \boldsymbol{n}	1	2	3	4
Term, $\boldsymbol{a}_{\boldsymbol{n}}$	-10	-6	-2	2

Answers

9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad
14. \qquad
15. \qquad
16. \qquad
17. \qquad
18. \qquad
19. \qquad
20. \qquad
21. \qquad
22. a. \qquad
b. \qquad
c. \qquad
23. The bacteria E. coli often cause illness among people who eat infected food. Suppose that a single E. coli bacterium in a batch of ground beef begins doubling every minute.
a. Complete the table below that represents the number of bacteria after x minutes. (Assume no bacteria die.)

Minutes, \boldsymbol{x}	0	1	2	3	4	5	6
Number of bacteria, \boldsymbol{y}							

b. Write an equation that can be used to calculate the number of bacteria in the food after any number of minutes.
c. How many bacteria will there be after 20 minutes?

