\qquad

4.9 Practice B

In Exercises 1-4, graph the inequality.

1. $y \leq x^{2}+3$
2. $y>x^{2}+2 x-3$
3. $y<-(x+1)^{2}+2$
4. $y \geq-x^{2}+4 x$
5. Describe and correct the error in graphing $y<-x^{2}+2$.

In Exercises 6 and 7, graph the system of quadratic inequalities.

6. $y \leq-x^{2}+3$
$y \geq 2 x^{2}-3 x+1$
7. $y>x^{2}-x+4$
$y<x^{2}+2 x-4$

In Exercises 8-11, solve the inequality algebraically.
8. $2 x^{2}-6>-11 x$
9. $2 x^{2}-5 x+3 \leq 1$
10. $\frac{1}{2} x^{2}+3 x \geq 2$
11. $\frac{1}{3} x^{2}-2 x<9$

In Exercises 12-15, solve the inequality by graphing.

12. $2 x^{2}-6>-3 x$
13. $4 x^{2}+3 x-5 \leq 1$
14. $\frac{1}{2} x^{2}+x \leq 2$
15. $\frac{2}{3} x^{2}+2 x>4$
16. An object is dropped from a building. The height h (in feet) of the object after t seconds can be modeled by $h(t)=-16 t^{2}-28 t+25$.
a. At what height was the object initially dropped? Explain.
b. Write an inequality that you can use to find the t-values for which the object was in the air.
c. Based on your results from parts (a) and (b), use a graphing calculator to determine the time intervals in which the object was in the air.
