\qquad

4.7 Practice A

In Exercises 1-8, solve the equation using any method. Explain your choice of method.

1. $x^{2}+36=0$
2. $x^{2}+6=-14$
3. $x^{2}-4 x+4=-9$
4. $x^{2}+12 x+36=-49$
5. $-3 x^{2}+5 x=4$
6. $4 x^{2}+22=18 x$
7. $-7 x=2 x^{2}+9$
8. $6 x^{2}=4 x-9$
9. Write a quadratic equation in the form $x^{2}+b x+c=0$ that has the solutions $x=3 \pm i$.

In Exercises 10-15, find the zeros of the function.

10. $f(x)=5 x^{2}+15$
11. $f(x)=x^{2}-x+4$
12. $k(x)=3 x^{2}-3 x+18$
13. $g(x)=3 x^{2}+21$
14. $f(x)=x^{2}+10 x+25$
15. $w(x)=-4 x^{2}+2 x-3$
16. What are the complex solutions of the equation $2 x^{2}-32 x+178=0$?
A. $8+20 i, 8-20 i$
B. $8+5 i, 8-5 i$
C. $32+5 i, 32-5 i$
D. $32+20 i, 32-20 i$

In Exercises 17 and 18, find a possible pair of integer values for a and c so that the quadratic equation has the given solution(s). Then write the equation.
17. $a x^{2}+8 x+c=0$; one real solution
18. $a x^{2}-5 x+c=0$; two imaginary solutions

In Exercises 19 and 20, use the Quadratic Formula to write a quadratic equation that has the given solutions.
19. $x=\frac{9 \pm \sqrt{-79}}{8}$
20. $x=\frac{-11 \pm \sqrt{97}}{-6}$
21. Suppose a quadratic equation has the form $x^{2}+x+c=0$. Show that the constant c must be less than $\frac{1}{4}$ in order for the equation to have two real solutions.

