3.7

Practice B

In Exercises 1 and 2, tell whether the points appear to represent a *linear*, an *exponential*, or a *quadratic* function.

1.

2.

In Exercises 3–6, plot the points. Tell whether the points appear to represent a *linear*, an *exponential*, or a *quadratic* function.

3.
$$\left(2, \frac{1}{9}\right), \left(1, \frac{1}{3}\right), \left(0, 1\right), \left(-1, 3\right), \left(-2, 9\right)$$

6.
$$(-3, -2), (-2, -1), (-1, 0), (0, 1), (1, 2)$$

In Exercises 7–10, tell whether the table of values represents a *linear*, an exponential, or a quadratic function.

7.

X	-3	-2	-1	0	1	2
у	0.9	0.4	0.1	0	0.1	0.4

8.

x	1	2	3	4	5	6
у	1	-1	-3	-5	-7	-9

9.

x	1	2	3	4	5	6
у	9	4	1	0	1	4

10.

X	-1	0	1	2	3
У	6	3	$\frac{3}{2}$	<u>3</u>	$\frac{3}{8}$

11. Write a function that has constant second differences of 4.