\qquad

3.7 Practice A

In Exercises 1 and 2, tell whether the points appear to represent a linear, an exponential, or a quadratic function.
1.

2.

In Exercises 3-6, plot the points. Tell whether the points appear to represent a linear, an exponential, or a quadratic function.
3. $(-3,4),(-2,1),(-1,0),(0,1),(1,4)$
4. $(-4,0),(-2,1),(0,2),(2,3),(4,4)$
5. $(-3,-6),(-2,-1),(-1,2),(0,3),(1,2)$
6. $\left(-2, \frac{1}{9}\right),\left(-1, \frac{1}{3}\right),(0,1),(1,3),(2,9)$
7. The table shows the demand for a certain commodity (measured in thousands), where x is the number of the month of the year.

Number of month, \boldsymbol{x}	1	2	3	4	5	6
Demand, \boldsymbol{y}	5	2	1	2	5	10

a. During what month is the demand at a minimum?
b. Plot the points. Let x be the independent variable. Then determine the type of function that best represents this situation.
c. Write a function in standard form that models the data.
d. Use the function from part (c) to find the demand for the commodity (measured in thousands) during August.

