\qquad
\qquad

3.6 Practice A

In Exercises 1-6, use the Distance Formula to write an equation of the parabola.

1. focus: $(0,2)$
directrix: $y=-2$
2. focus: $(0,-3)$
directrix: $y=3$
3. focus: $(0,-6)$
directrix: $y=6$
4. vertex: $(0,0)$
directrix: $y=4$
5. vertex: $(0,0)$
focus: $(0,-1)$
6. vertex: $(0,0)$
directrix: $y=2$
7. Which of the given characteristics describe parabolas that open up? Explain your reasoning.
A. focus: $(0,3)$
B. focus: $(0,-5)$
C. focus: $(0,-10)$
directrix: $y=-3$
directrix: $y=5$
directrix: $y=10$

In Exercises 8-10, identify the focus, directrix, and axis of symmetry of the parabola. Graph the equation.
8. $y=\frac{1}{12} x^{2}$
9. $y=-\frac{1}{16} x^{2}$
10. $x=\frac{1}{8} y^{2}$
11. The cross section (with units in inches) of a parabolic satellite dish can be modeled by the equation $y=\frac{1}{48} x^{2}$. How far is the receiver from the vertex of the cross section? Explain.

In Exercises 12-17, write an equation of the parabola with the given characteristics.
12. focus: $(2,0)$
directrix: $x=-2$
13. focus: $(-4,0)$ directrix: $x=4$
16. focus: $(0,2)$
vertex: $(0,0)$
14. focus: $\left(0, \frac{3}{4}\right)$
directrix: $y=-\frac{3}{4}$
17. directrix: $x=1$
vertex: $(0,0)$

In Exercises 18-21, identify the vertex, focus, directrix, and axis of symmetry of the parabola. Describe the transformations of the graph of the standard equation with $p=1$ and vertex $(0,0)$.
18. $y=\frac{1}{12}(x-1)^{2}+3$
19. $y=-\frac{1}{8}(x+5)^{2}-2$
20. $x=\frac{1}{4}(y+4)^{2}+2$
21. $y=-\frac{1}{28}(x+6)^{2}+10$

