3.6 Practice A

In Exercises 1–6, use the Distance Formula to write an equation of the parabola.

1.	focus: (0, 2)	2.	focus: $(0, -3)$	3.	focus: $(0, -6)$
	directrix: $y = -2$		directrix: $y = 3$		directrix: $y = 6$
4.	vertex: (0, 0)	5.	vertex: (0, 0)	6.	vertex: (0, 0)
	directrix: $y = 4$		focus: (0, -1)		directrix: $y = 2$

7. Which of the given characteristics describe parabolas that open up? Explain your reasoning.

A. focus: (0, 3)B. focus: (0, -5)C. focus: (0, -10)directrix: y = -3directrix: y = 5directrix: y = 10

In Exercises 8–10, identify the focus, directrix, and axis of symmetry of the parabola. Graph the equation.

8. $y = \frac{1}{12}x^2$ **9.** $y = -\frac{1}{16}x^2$ **10.** $x = \frac{1}{8}y^2$

11. The cross section (with units in inches) of a parabolic satellite dish can be modeled by the equation $y = \frac{1}{48}x^2$. How far is the receiver from the vertex of the cross section? Explain.

In Exercises 12–17, write an equation of the parabola with the given characteristics.

12. focus: (2, 0) **13.** focus: (-4, 0) **14.** focus: $(0, \frac{3}{4})$

 directrix: x = -2 directrix: x = 4 directrix: $y = -\frac{3}{4}$
15. directrix: x = -6 **16.** focus: (0, 2) **17.** directrix: x = 1

 vertex: (0, 0) vertex: (0, 0) vertex: (0, 0)

In Exercises 18–21, identify the vertex, focus, directrix, and axis of symmetry of the parabola. Describe the transformations of the graph of the standard equation with p = 1 and vertex (0, 0).

18.
$$y = \frac{1}{12}(x-1)^2 + 3$$

19. $y = -\frac{1}{8}(x+5)^2 - 2$
20. $x = \frac{1}{4}(y+4)^2 + 2$
21. $y = -\frac{1}{28}(x+6)^2 + 10$