\qquad
\qquad

3.5 Practice B

In Exercises 1 and 2, find the x-intercepts and axis of symmetry of the graph of the function.

1. $f(x)=-\frac{1}{3} x(x+5)$
2. $g(x)=9(x+6)(x-4)$

In Exercises 3-6, graph the quadratic function. Label the vertex, axis of symmetry, and x-intercepts. Describe the domain and range of the function.
3. $f(x)=4(x+3)(x+2)$
4. $y=-3(x-4)(x+2)$
5. $p(x)=x^{2}-7 x+12$
6. $y=2 x^{2}+20 x+42$

In Exercises 7-10, find the zero(s) of the function.
7. $f(x)=\frac{2}{3}(x+8)(x-5)$
8. $g(x)=3 x^{2}+13 x+4$
9. $y=\left(x^{2}-25\right)(x+7)$
10. $y=x^{3}-81 x$

In Exercises 11-14, use zeros to graph the function.
11. $f(x)=-2(x-5)(x-3)$
12. $g(x)=x^{2}+2 x-24$
13. $y=-4 x^{2}-16 x+20$
14. $f(x)=3 x^{2}-12$

In Exercises 15-19, write a quadratic function in standard form whose graph satisfies the given conditions.
15. vertex: $(6,-2)$
16. x-intercepts: 5 and -8
17. passes through $(-4,0),(2,0)$, and $(0,-4)$
18. y decreases as x increases when $x<1 ; y$ increases as x increases when $x>1$
19. range: $y \leq 6$
20. The cross section of a satellite dish can be modeled by the function $y=\frac{1}{6}\left(x^{2}-9\right)$, where x and y are measured in feet. The x-axis represents the top of the opening of the dish.
a. How wide is the satellite dish?
b. How deep is the satellite dish?

