\qquad

3.4 Practice B

In Exercises 1-3, determine whether the function is even, odd, or neither.

1. $f(x)=3 x^{2}+2 x$
2. $g(x)=\frac{2}{3} x$
3. $h(x)=\frac{1}{3} x^{2}-2$

In Exercises 4 and 5, determine whether the function represented by the graph is even, odd, or neither.
4.

5.

In Exercises 6-8, find the vertex and the axis of symmetry of the graph of the function.
6. $f(x)=-\frac{1}{3}(x+6)^{2}$
7. $f(x)=9(x-4)^{2}$
8. $y=-10(x+9)^{2}$

In Exercises 9-11, graph the function. Compare the graph to the graph of $f(x)=x^{2}$.
9. $g(x)=4(x+2)^{2}$
10. $g(x)=\frac{1}{3}(x-5)^{2}$
11. $g(x)=\frac{1}{6}(x-1)^{2}$

In Exercises 12-14, find the vertex and the axis of symmetry of the graph of the function.
12. $y=6(x-4)^{2}-3$
13. $f(x)=-4(x+1)^{2}+5$
14. $y=-(x+3)^{2}-2$

In Exercises 15 and 16, graph the function. Compare the graph to the graph of $f(x)=x^{2}$.
15. $g(x)=3(x+2)^{2}-1$
16. $g(x)=-\frac{1}{2}(x-1)^{2}+3$

In Exercises 17 and 18, rewrite the quadratic function in vertex form.
17. $y=5 x^{2}-10 x+2$
18. $f(x)=-2 x^{2}+8 x+5$
19. The graph of $y=x^{2}$ is reflected in the x-axis and translated 3 units right and 2 units up. Write an equation for the function in vertex form and in standard form. Describe advantages of writing the function in each form.

