Practice B

In Exercises 1-3, determine whether the function is even, odd, or neither.

1.
$$f(x) = 3x^2 + 2x$$
 2. $g(x) = \frac{2}{3}x$

2.
$$g(x) = \frac{2}{3}x$$

3.
$$h(x) = \frac{1}{3}x^2 - 2$$

In Exercises 4 and 5, determine whether the function represented by the graph is even, odd, or neither.

5.

In Exercises 6-8, find the vertex and the axis of symmetry of the graph of the function.

6.
$$f(x) = -\frac{1}{3}(x+6)^2$$
 7. $f(x) = 9(x-4)^2$ **8.** $y = -10(x+9)^2$

7.
$$f(x) = 9(x-4)^2$$

8.
$$y = -10(x + 9)^2$$

In Exercises 9-11, graph the function. Compare the graph to the graph of $f(x) = x^2.$

9.
$$g(x) = 4(x+2)^2$$

9.
$$g(x) = 4(x+2)^2$$
 10. $g(x) = \frac{1}{3}(x-5)^2$ **11.** $g(x) = \frac{1}{6}(x-1)^2$

11.
$$g(x) = \frac{1}{6}(x-1)^2$$

In Exercises 12-14, find the vertex and the axis of symmetry of the graph of the function.

12.
$$y = 6(x - 4)^2 -$$

12.
$$y = 6(x-4)^2 - 3$$
 13. $f(x) = -4(x+1)^2 + 5$ **14.** $y = -(x+3)^2 - 2$

14.
$$y = -(x+3)^2 - 2$$

In Exercises 15 and 16, graph the function. Compare the graph to the graph of $f(x) = x^2.$

15.
$$g(x) = 3(x+2)^2 - 1$$

16.
$$g(x) = -\frac{1}{2}(x-1)^2 + 3$$

In Exercises 17 and 18, rewrite the quadratic function in vertex form.

17.
$$y = 5x^2 - 10x + 2$$

18.
$$f(x) = -2x^2 + 8x + 5$$

19. The graph of $y = x^2$ is reflected in the x-axis and translated 3 units right and 2 units up. Write an equation for the function in vertex form and in standard form. Describe advantages of writing the function in each form.