\qquad

3.2 Practice B

In Exercises 1-3, graph the function. Compare the graph to the graph of $f(x)=x^{2}$.

1. $g(x)=x^{2}+5$
2. $h(x)=x^{2}+10$
3. $j(x)=x^{2}-5$

In Exercises 4-6, graph the function. Compare the graph to the graph of $f(x)=x^{2}$.
4. $g(x)=-2 x^{2}+4$
5. $h(x)=-\frac{1}{4} x^{2}-1$
6. $k(x)=\frac{1}{3} x^{2}+5$

In Exercises 7 and 8, describe the transformation from the graph of f to the graph of g. Then graph f and g in the same coordinate plane. Write an equation that represents \boldsymbol{g} in terms of \boldsymbol{x}.
7. $f(x)=-\frac{1}{2} x^{2}-4$
$g(x)=f(x)-2$
8. $f(x)=2 x^{2}+7$
$g(x)=f(x)-9$

In Exercises 9-12, find the zeros of the function.
9. $y=-x^{2}+81$
10. $y=3 x^{2}-75$
11. $f(x)=-5 x^{2}+20$
12. $f(x)=-12 x^{2}+27$
13. The function $y=-16 x^{2}+100$ represents the height y (in feet) of a pencil x seconds after falling out the window of a school building. Find and interpret the x - and y-intercepts.
14. The paths of water from three different waterfalls are given below. Each function gives the height h (in feet) and the horizontal distance d (in feet) of the water.

Waterfall 1: $h=-2.4 d^{2}+1.5$
Waterfall 2: $h=-2.4 d^{2}+3$
Waterfall 3: $h=-1.4 d^{2}+3$
a. Which waterfall drops water from the lowest point?
b. Which waterfall sends water the farthest horizontal distance?
c. What do you notice about the paths of Waterfall 1 and Waterfall 2?

