Practice B

In Exercises 1-3, graph the function. Compare the graph to the graph of $f(x) = x^2.$

1.
$$g(x) = x^2 + 5$$

2.
$$h(x) = x^2 + 10$$

3.
$$j(x) = x^2 - 5$$

In Exercises 4-6, graph the function. Compare the graph to the graph of $f(x) = x^2.$

4.
$$g(x) = -2x^2 + 4$$

4.
$$g(x) = -2x^2 + 4$$
 5. $h(x) = -\frac{1}{4}x^2 - 1$ **6.** $k(x) = \frac{1}{3}x^2 + 5$

6.
$$k(x) = \frac{1}{3}x^2 + 5$$

In Exercises 7 and 8, describe the transformation from the graph of f to the graph of g. Then graph f and g in the same coordinate plane. Write an equation that represents g in terms of x.

7.
$$f(x) = -\frac{1}{2}x^2 - 4$$

$$g(x) = f(x) - 2$$

8.
$$f(x) = 2x^2 + 7$$

$$g(x) = f(x) - 9$$

In Exercises 9-12, find the zeros of the function.

9.
$$y = -x^2 + 81$$

10.
$$y = 3x^2 - 75$$

11.
$$f(x) = -5x^2 + 20$$

12.
$$f(x) = -12x^2 + 27$$

- **13.** The function $y = -16x^2 + 100$ represents the height y (in feet) of a pencil x seconds after falling out the window of a school building. Find and interpret the x- and y-intercepts.
- **14.** The paths of water from three different waterfalls are given below. Each function gives the height h (in feet) and the horizontal distance d (in feet) of the water.

Waterfall 1:
$$h = -2.4d^2 + 1.5$$

Waterfall 2:
$$h = -2.4d^2 + 3$$

Waterfall 3:
$$h = -1.4d^2 + 3$$

- **a.** Which waterfall drops water from the lowest point?
- **b.** Which waterfall sends water the farthest horizontal distance?
- **c.** What do you notice about the paths of Waterfall 1 and Waterfall 2?