3.2 Practice A

In Exercises 1–3, graph the function. Compare the graph to the graph of $f(x) = x^2$.

- **1.** $g(x) = x^2 + 4$ **2.** $h(x) = x^2 + 7$ **3.** $k(x) = x^2 2$
- In Exercises 4–6, graph the function. Compare the graph to the graph of $f(x) = x^2$.
 - **4.** $g(x) = -x^2 + 1$ **5.** $h(x) = -x^2 3$ **6.** $j(x) = 3x^2 2$

In Exercises 7 and 8, describe the transformation from the graph of f to the graph of g. Then graph f and g in the same coordinate plane. Write an equation that represents g in terms of x.

7. $f(x) = 2x^2 + 1$ g(x) = f(x) - 38. $f(x) = \frac{1}{3}x^2 - 1$ g(x) = f(x) + 4

In Exercises 9–12, find the zeros of the function.

- **9.** $y = x^2 4$ **10.** $y = x^2 - 64$ **11.** $f(x) = -x^2 + 16$ **12.** $f(x) = 2x^2 - 50$
- **13.** You drop a stick from a height of 64 feet. At the same time, your friend drops a stick from a height of 144 feet.
 - **a.** What does the function $h(t) = -16t^2 + 64$ represent in this situation?
 - **b.** After how many seconds does your stick hit the ground?
 - c. How many seconds later does your friend's stick hit the ground?

In Exercises 14–17, sketch a parabola with the given characteristics.

- **14.** The parabola opens down and the vertex is (0, 2).
- **15.** The vertex is (0, -4) and one of the *x*-intercepts is 3.
- **16.** The related function is decreasing when x < 0 and the zeros are -2 and 2.
- **17.** The lowest point on the parabola is (0, -1).
- **18.** Your friend claims that in the equation $y = ax^2 + c$, the vertex changes when the value of *c* changes. Is your friend correct? Explain your reasoning.