3.1 Practice A

In Exercises 1–6, graph the function. Compare the graph to the graph of $f(x) = x^2$.

- **1.** $g(x) = 4x^2$ **2.** $h(x) = 1.5x^2$ **3.** $j(x) = \frac{1}{3}x^2$
- **4.** $g(x) = -3x^2$ **5.** $k(x) = -\frac{5}{2}x^2$ **6.** $n(x) = -0.5x^2$

In Exercises 7–9, use a graphing calculator to graph the function. Compare the graph to the graph of $y = -5x^2$.

- **7.** $y = 5x^2$ **8.** $y = -0.5x^2$ **9.** $y = -0.05x^2$
- **10.** The arch support of a bridge can be modeled by $y = -0.00125x^2$, where x and y are measured in feet.
 - **a.** The width of the arch is 800 feet. Describe the domain of the function. Explain.
 - **b.** Graph the function using the domain in part (a). Find the height of the arch.
- **11.** Is the *y*-intercept of the graph of $y = ax^2$ always 0? Explain.

In Exercises 12–15, determine whether the statement is *always*, *sometimes*, or *never* true. Explain your reasoning.

- **12.** The graph of $f(x) = ax^2$ is narrower than the graph of $g(x) = dx^2$ when d = -a.
- **13.** The graph of $f(x) = ax^2$ opens in the same direction as the graph of $g(x) = dx^2$ when d = |a|.
- 14. The graph of $f(x) = (ax)^2$ opens in the same direction as the graph of $g(x) = dx^2$ when $a^2 = d$.
- **15.** The graph of $f(x) = (ax)^2$ is narrower than the graph of $g(x) = dx^2$ when $0 < a^2 < d$.