1.1 Practice B

In Exercises 1–4, graph the function. Compare the graph to the graph of f(x) = |x|. Describe the domain and range.

1.
$$m(x) = |x - 3|$$

2.
$$t(x) = 4|x|$$

3.
$$g(x) = -3|x|$$

4.
$$z(x) = -\frac{4}{3}|x|$$

In Exercises 5 and 6, graph the function. Compare the graph to the graph of f(x) = |x - 2| + 4.

5.
$$k(x) = |x - 5| + 4$$

6.
$$q(x) = |x - 2| - 3$$

In Exercises 7 and 8, compare the graphs. Find the value of h, k, or a.

7.

8

In Exercises 9 and 10, write an equation that represents the given transformation(s) of the graph of g(x) = |x|.

- **9.** horizontal translation 7 units right
- **10.** vertical shrink by a factor of $\frac{1}{3}$ and a reflection in the *x*-axis

In Exercises 11 and 12, graph and compare the two functions.

11.
$$c(x) = |x - 4| + 3$$
; $d(x) = |6x - 4| + 3$

12.
$$p(x) = |x + 1| - 2$$
; $q(x) = \left| -\frac{2}{5}x + 1 \right| - 2$

13. Graph $y = -\frac{3}{2}|x+3| - 5$ and y = -8 in the same coordinate plane. Use the graph to solve the equation $-\frac{3}{2}|x+3| - 5 = -8$. Check your solutions.