\qquad

6.6 Practice B

In Exercises 1 and 2, determine whether the recursive rule represents an arithmetic sequence or geometric sequence.

1. $a_{1}=5 ; a_{n}=12 a_{n-1}$
2. $a_{1}=6 ; a_{n}=a_{n-1}-3$

In Exercises 3-6, write the first six terms of the sequence. Then graph the sequence.
3. $a_{1}=10 ; a_{n}=a_{n-1}-7$
4. $a_{1}=36 ; a_{n}=-1.5 a_{n-1}$
5. $a_{1}=120 ; a_{n}=\frac{1}{5} a_{n-1}$
6. $a_{1}=-6 ; a_{n}=-3 a_{n-1}$

In Exercises 7 and 8, write a recursive rule for the sequence.
7.

\boldsymbol{n}	1	2	3	4
$\boldsymbol{a}_{\boldsymbol{n}}$	23	13	3	-7

8.

\boldsymbol{n}	1	2	3	4
$\boldsymbol{a}_{\boldsymbol{n}}$	256	128	64	32

In Exercises 9 and 10, write an explicit rule for the recursive rule.
9. $a_{1}=8 ; a_{n}=-9 a_{n-1}$
10. $a_{1}=5 ; a_{n}=a_{n-1}+18$

In Exercises 11 and 12, write a recursive rule for the explicit rule.
11. $a_{n}=1.2 n+2$
12. $a_{n}=-76\left(\frac{3}{2}\right)^{n-1}$

In Exercises 13 and 14, graph the first four terms of the sequence with the given description. Write a recursive rule and an explicit rule for the sequence.
13. The first term of the sequence is -2 . Each term of the sequence is -5 times the preceding term.
14. The first term of the sequence is 23 . Each term of the sequence is 9 less than the preceding term.

In Exercises 15 and 16, write a recursive rule for the sequence. Then write the next two terms of the sequence.
15. $4,-4,0,-4,-4, \ldots$
16. $100,20,5,4, \frac{5}{4}, \ldots$
17. Write the first five terms of the sequence $a_{1}=3 ; a_{n}=-a_{n-1}+5$. Determine whether the sequence is arithmetic, geometric, recursive, or none of these. Explain your reasoning.

