\qquad

6.6 Practice A

In Exercises 1 and 2, determine whether the recursive rule represents an arithmetic sequence or geometric sequence.

1. $a_{1}=3 ; a_{n}=a_{n-1}+4$
2. $a_{1}=3 ; a_{n}=9 a_{n-1}$

In Exercises 3-6, write the first six terms of the sequence. Then graph the sequence.
3. $a_{1}=0 ; a_{n}=a_{n-1}+3$
4. $a_{1}=18 ; a_{n}=a_{n-1}-8$
5. $a_{1}=1 ; a_{n}=5 a_{n-1}$
6. $a_{1}=4 ; a_{n}=2.5 a_{n-1}$

In Exercises 7 and 8, write a recursive rule for the sequence.
7.

\boldsymbol{n}	1	2	3	4
$\boldsymbol{a}_{\boldsymbol{n}}$	4	28	196	1372

8.

\boldsymbol{n}	1	2	3	4
$\boldsymbol{a}_{\boldsymbol{n}}$	6	11	16	21

In Exercises 9 and 10, write an explicit rule for the recursive rule.
9. $a_{1}=-10 ; a_{n}=a_{n-1}+5$
10. $a_{1}=14 ; a_{n}=-2 a_{n-1}$

In Exercises 11 and 12, write a recursive rule for the explicit rule.
11. $a_{n}=5(2)^{n-1}$
12. $a_{n}=-7 n+3$

In Exercises 13 and 14, graph the first four terms of the sequence with the given description. Write a recursive rule and an explicit rule for the sequence.
13. The first term of the sequence is 8 . Each term of the sequence is 12 more than the preceding term.
14. The first term of the sequence is 81 . Each term of the sequence is one-third the preceding term.

In Exercises 15 and 16, write a recursive rule for the sequence. Then write the next two terms of the sequence.
15. $3,5,8,13,21, \ldots$
16. $24,20,4,16,-12, \ldots$
17. Write the first five terms of the sequence $a_{1}=4 ; a_{n}=\frac{1}{2} a_{n-1}+6$. Determine whether the sequence is arithmetic, geometric, or neither. Explain your reasoning.

