6.6 Practice A

In Exercises 1 and 2, determine whether the recursive rule represents an *arithmetic sequence* or *geometric sequence*.

1.
$$a_1 = 3; a_n = a_{n-1} + 4$$
 2. $a_1 = 3; a_n = 9a_{n-1}$

In Exercises 3–6, write the first six terms of the sequence. Then graph the sequence.

3. $a_1 = 0; a_n = a_{n-1} + 3$ **4.** $a_1 = 18; a_n = a_{n-1} - 8$

5.
$$a_1 = 1; a_n = 5a_{n-1}$$
 6. $a_1 = 4; a_n = 2.5a_{n-1}$

In Exercises 7 and 8, write a recursive rule for the sequence.

7.	n	1	2	3	4	8. /	n	1	2	3	4
	a _n	4	28	196	1372	é	a _n	6	11	16	21

In Exercises 9 and 10, write an explicit rule for the recursive rule.

9. $a_1 = -10; a_n = a_{n-1} + 5$ **10.** $a_1 = 14; a_n = -2a_{n-1}$

In Exercises 11 and 12, write a recursive rule for the explicit rule.

11.
$$a_n = 5(2)^{n-1}$$
 12. $a_n = -7n + 3$

In Exercises 13 and 14, graph the first four terms of the sequence with the given description. Write a recursive rule and an explicit rule for the sequence.

- **13.** The first term of the sequence is 8. Each term of the sequence is 12 more than the preceding term.
- **14.** The first term of the sequence is 81. Each term of the sequence is one-third the preceding term.

In Exercises 15 and 16, write a recursive rule for the sequence. Then write the next two terms of the sequence.

- **15.** 3, 5, 8, 13, 21, ... **16.** 24, 20, 4, 16, -12, ...
- **17.** Write the first five terms of the sequence $a_1 = 4$; $a_n = \frac{1}{2}a_{n-1} + 6$. Determine whether the sequence is *arithmetic*, *geometric*, or *neither*. Explain your reasoning.