\qquad
\qquad

6.4 Practice B

In Exercises 1-9, solve the equation. Check your solution.

1. $3^{8 x}=3^{5 x-6}$
2. $4^{x}=2^{5 x+3}$
3. $8^{5 x}=4^{4 x+7}$
4. $25^{x-2}=125^{3 x+1}$
5. $9^{x-6}=729^{3(x+2)}$
6. $4^{6(-x+2)}=8^{-3 x-4}$
7. $\left(\frac{1}{8}\right)^{2 x+4}=16^{4-x}$
8. $\left(\frac{2}{3}\right)^{x+8}=\left(\frac{3}{2}\right)^{2 x-5}$
9. $\left(\frac{5}{4}\right)^{3 x+5}=\left(\frac{16}{25}\right)^{-4 x}$
10. Describe and correct the error in solving the exponential equation.

$$
\begin{aligned}
X\left(\frac{1}{16}\right)^{3 x} & =64^{x-4} \\
\left(4^{-2}\right)^{3 x} & =\left(8^{2}\right)^{x-4} \\
-6 x & =2 x-8 \\
x & =1
\end{aligned}
$$

In Exercises 11-16, use a graphing calculator to solve the equation.

11. $4^{-x+2}=-\frac{1}{3} x+5$
12. $\frac{1}{2} x+3=\left(\frac{1}{5}\right)^{2 x+1}$
13. $6^{x}=4^{-x+3}$
14. $5^{x-4}=3^{-x}$
15. $3^{x+2}=-4^{-x+1}$
16. $3^{-x-5}=2^{x+3}$
17. A bread dough doubles in size every hour. You begin measuring the volume of the dough 1 hour after the dough is prepared. The volume y (in cubic inches) of the dough x hours after the dough is prepared is represented by $y=35\left(2^{x-1}\right)$. When will the volume of the dough be 4200 cubic inches?

In Exercises 18-20, solve the equation.

18. $125^{x-1}=5^{3 x-2}$
19. $8^{2 x+1}=2^{3(2 x+1)}$
20. $3^{8(2 x-1)}=81^{4 x-2}$
21. You deposit $\$ 750$ in a savings account that earns 4% annual interest compounded yearly. Write and solve an exponential equation to determine when the balance of the account will be $\$ 1000$.

In Exercises 22 and 23, use a graphing calculator to solve the equation.

22. $\sqrt{3}=3^{3 x-5}$
23. $\sqrt{2}=2^{x-3}$
