\qquad

6.4 Practice A

In Exercises 1-9, solve the equation. Check your solution.

1. $3^{4 x}=3^{12}$
2. $2^{x+3}=2^{5}$
3. $5^{3 x}=5^{2 x-7}$
4. $3^{x}=27$
5. $5^{x}=625$
6. $11^{x-4}=121^{x}$
7. $\left(\frac{1}{3}\right)^{x}=81$
8. $\frac{1}{125}=5^{2 x+7}$
9. $7^{5-4 x}=\frac{1}{343}$
10. Describe and correct the error in solving the exponential equation.

$$
\begin{aligned}
\left(\frac{1}{6}\right)^{3 x-1} & =36^{x-7} \\
\left(6^{-1}\right)^{3 x-1} & =\left(6^{-2}\right)^{x-7} \\
-3 x+1 & =-2 x+14 \\
x & =-13
\end{aligned}
$$

In Exercises 11-16, use a graphing calculator to solve the equation.
11. $5^{x-1}=10$
12. $3^{x+5}=7$
13. $\left(\frac{1}{3}\right)^{6 x+1}=-5$
14. $\left(\frac{1}{4}\right)^{x+2}=9$
15. $3^{x-5}=3 x-4$
16. $4 x+1=5^{x-3}$

In Exercises 17-19, solve the equation using the Property of Equality for Exponential Equations.
17. $40 \cdot 5^{x-2}=200$
18. $8 \cdot 2^{x+6}=32$
19. $3\left(4^{-3 x-1}\right)=48$
20. A bacterial culture triples in size every hour. You begin observing the number of bacteria 2 hours after the culture is prepared. The amount y of bacteria x hours after the culture is prepared is represented by $y=162\left(3^{x-2}\right)$. When will there be 8100 bacteria?

In Exercises 21-23, solve the equation.
21. $2^{3 x-6}=8^{x-2}$
22. $9^{3 x-2}=27^{2 x-2}$
23. $2^{4(x-3)}=16^{x+1}$

In Exercises 24 and 25, use a graphing calculator to solve the equation.
24. $7^{x+3}=\sqrt{7}$
25. $\sqrt{10}=10^{3 x-1}$

