6.4 Practice A

In Exercises 1–9, solve the equation. Check your solution.

- 1. $3^{4x} = 3^{12}$ 2. $2^{x+3} = 2^5$ 3. $5^{3x} = 5^{2x-7}$ 4. $3^x = 27$ 5. $5^x = 625$ 6. $11^{x-4} = 121^x$ 7. $\left(\frac{1}{3}\right)^x = 81$ 8. $\frac{1}{125} = 5^{2x+7}$ 9. $7^{5-4x} = \frac{1}{343}$
- **10.** Describe and correct the error in solving the exponential equation.

$$\begin{pmatrix} \left(\frac{1}{6}\right)^{3x-1} = 36^{x-7} \\ \left(6^{-1}\right)^{3x-1} = \left(6^{-2}\right)^{x-7} \\ -3x + 1 = -2x + 14 \\ x = -13 \end{cases}$$

In Exercises 11–16, use a graphing calculator to solve the equation.

11. $5^{x-1} = 10$ **12.** $3^{x+5} = 7$ **13.** $\left(\frac{1}{3}\right)^{6x+1} = -5$ **14.** $\left(\frac{1}{4}\right)^{x+2} = 9$ **15.** $3^{x-5} = 3x - 4$ **16.** $4x + 1 = 5^{x-3}$

In Exercises 17–19, solve the equation using the Property of Equality for Exponential Equations.

17. $40 \bullet 5^{x-2} = 200$ **18.** $8 \bullet 2^{x+6} = 32$ **19.** $3(4^{-3x-1}) = 48$

20. A bacterial culture triples in size every hour. You begin observing the number of bacteria 2 hours after the culture is prepared. The amount y of bacteria x hours after the culture is prepared is represented by $y = 162(3^{x-2})$. When will there be 8100 bacteria?

In Exercises 21–23, solve the equation.

21. $2^{3x-6} = 8^{x-2}$ **22.** $9^{3x-2} = 27^{2x-2}$ **23.** $2^{4(x-3)} = 16^{x+1}$

In Exercises 24 and 25, use a graphing calculator to solve the equation.

24. $7^{x+3} = \sqrt{7}$ **25.** $\sqrt{10} = 10^{3x-1}$