Practice B

In Exercises 1-3, determine whether the equation represents an exponential function. Explain.

1.
$$y = -6^x$$

2.
$$y = 5(1)^x$$

3.
$$v = 7x^3$$

In Exercises 4 and 5, determine whether the table represents an exponential function. Explain.

	X	У
	1	5
	2	2
	3	-1
	4	-4

X	у
1	24
2	12
3	6
4	3

In Exercises 6 and 7, evaluate the function for the given value of x.

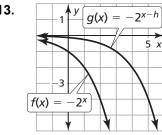
6.
$$y = (1.2)^x$$
; $x = 2$

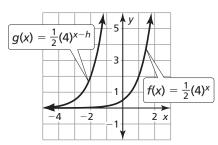
7.
$$f(x) = \frac{1}{2}(8)^x$$
; $x = -2$

In Exercises 8-10, graph the function. Compare the graph to the graph of the parent function. Describe the domain and range of f.

8.
$$f(x) = 5(\frac{1}{4})^{\frac{1}{4}}$$

8.
$$f(x) = 5\left(\frac{1}{4}\right)^x$$
 9. $f(x) = -\frac{1}{3}(3)^x$ **10.** $f(x) = \frac{4}{3}(6)^x$


10.
$$f(x) = \frac{4}{3}(6)^{\frac{1}{3}}$$


In Exercises 11 and 12, graph the function. Describe the domain and range.

11.
$$f(x) = -6\left(\frac{1}{3}\right)^{x-1} - 4$$

12.
$$f(x) = 2(5)^{x+1} - 3$$

In Exercises 13 and 14, compare the graphs. Find the value of h, k, or a.

15. Graph the function $f(x) = 2^x$. Then graph $g(x) = 2^{x-3}$. How are the y-intercept, domain, and range affected by the transformation?