5.4 Practice B

In Exercises 1–3, match the system of linear equations with its graph. Then determine whether the system has *one solution, no solution,* or *infinitely many solutions.*

In Exercises 4–9, solve the system of linear equations.

4.	3x - 3y = 6	5.	12x - 8y = 10	6.	4x - 3y = 16
	-6x + 6y = -12		-6x + 4y = 5		x + y = -3
7.	6x + 9y = -15	8.	-x - 4y = 10	9.	-5x + 2y = 3
	4x + 6y = 10		x + 4y = 10		10x - 4v = -6

In Exercises 10–15, use only the slopes and *y*-intercepts of the graphs of the equations to determine whether the system of linear equations has *one solution*, *no solution*, or *infinitely many solutions*. Explain.

10.	x - 3y = 9	11.	-3x + 8y = 32	12.	2x + 2y = 2
	2x - 3y = 9		6x - 16y = -64		9x + 9y = 9
13.	2x - 4y = -24	14.	y = -3x + 7	15.	5x + y = -3
	3x - 6y = -24		3x + 2y = -6		2y = -10x - 6

- **16.** Write a system of three linear equations in two variables so that two of the equations have infinitely many solutions, but the entire system has one solution.
- **17.** Consider the system of linear equations y = ax + 3 and $y = \frac{1}{a}x 2$.
 - **a.** If possible, find a value of *a* so that the system of linear equations has no solution.
 - **b.** If possible, find a value of *a* so that the system of linear equations has one solution.