\qquad
\qquad

4.5 Practice B

In Exercises 1-3, write the equation in standard form. Then identify the values of a, b, and c that you would use to solve the equation using the Quadratic Formula.

1. $x^{2}+2 x=9$
2. $6 x-1=7 x^{2}$
3. $-10 x+2=-4 x^{2}+9$

In Exercises 4-11, solve the equation using the Quadratic Formula. Round your solutions to the nearest tenth, if necessary.
4. $x^{2}-8 x+16=0$
5. $x^{2}+10 x-11=0$
6. $2 x^{2}-7 x+3=0$
7. $5 x^{2}+3 x-1=0$
8. $5 x^{2}-3 x+4=0$
9. $x^{2}=-2 x-1$
10. $8 x^{2}+9 x=3$
11. $-5 x^{2}+2 x=4$
12. You launch a water balloon. The function $h=-0.08 t^{2}+1.6 t+2$ models the height h (in feet) of the water balloon after t seconds.
a. After how many seconds is the water balloon at a height of 9 feet?
b. After how many seconds does the water balloon hit the ground?

In Exercises 13-15, determine the number of real solutions of the equation.
13. $4 x^{2}=-3 x-8$
14. $-2 x^{2}-4 x+7=0$
15. $x^{2}+6 x+9=0$

In Exercises 16-18, find the number of \boldsymbol{x}-intercepts of the graph of the function.
16. $y=3 x^{2}-6 x+3$
17. $y=4 x^{2}+3 x+9$
18. $y=-2 x^{2}-3 x+1$

In Exercise 19-24, solve the equation using any method. Explain your choice of method.
19. $x^{2}-20 x=13$
20. $-7 x^{2}=21 x$
21. $-9 x^{2}=72$
22. $7 x^{2}+7=8-9 x$
23. $5 x^{2}=4 x+10$
24. $x^{2}-12 x+36=0$
25. Consider the equation $3 x^{2}+5 x+6=0$.
a. Use the discriminant to determine the number of solutions.
b. Change the sign of c in the equation. Write the new equation.
c. Use the discriminant to determine the number of solutions of the new equation.

Did your answer change? Explain.

