\qquad
\qquad

4.3 Practice B

In Exercises 1-3, determine the number of real solutions of the equation. Then solve the equation using square roots.

1. $x^{2}=121$
2. $x^{2}=-15$
3. $x^{2}=196$

In Exercises 4-12, solve the equation using square roots.
4. $x^{2}+9=0$
5. $4 x^{2}-16=0$
6. $-2 x^{2}+10=10$
7. $5 x^{2}-21=24$
8. $9 x^{2}+7=8$
9. $4 x^{2}-38=43$
10. $(x+5)^{2}=49$
11. $(4 x-3)^{2}=25$
12. $25(x-1)^{2}=49$

In Exercises 13-15, solve the equation using square roots. Round your solutions to the nearest hundredth.
13. $2 x^{2}+7=21$
14. $-16=8-3 x^{2}$
15. $5=9 x^{2}-6$
16. Describe and correct the error in solving the equation $x^{2}+25=9$ using square roots.

$$
\begin{aligned}
\chi x^{2}+25 & =9 \\
x^{2} & =-16 \\
x & = \pm 4
\end{aligned}
$$

17. A can of juice has a height of 10 inches and a volume of 160π cubic inches. The volume of a can with radius r is given by the formula $V=\pi r^{2} h$.
a. Write an equation describing this situation, where r is the radius of the can.
b. Find the radius of the can.
18. Solve each equation without graphing.
a. $x^{2}+6 x+9=25$
b. $x^{2}-10 x+25=49$
c. $x^{2}-1=24$
