4.1 Practice A

In Exercises 1–9, simplify the expression.

1.
$$\sqrt{50}$$

2.
$$\sqrt{68}$$

3.
$$-\sqrt{98}$$

4.
$$\sqrt{\frac{9}{25}}$$

5.
$$-\sqrt{\frac{3}{64}}$$

6.
$$-\sqrt{\frac{x^2}{4}}$$

7.
$$\sqrt[3]{24}$$

8.
$$\sqrt[3]{-250}$$

9.
$$-\sqrt[3]{128x^4}$$

10. Describe and correct the error in simplifying the expression.

$$\sqrt[3]{16} = 4$$

In Exercises 11–13, write a factor that you can use to rationalize the denominator of the expression.

11.
$$\frac{3}{\sqrt{5}}$$

12.
$$\frac{1}{\sqrt{7n}}$$

13.
$$\frac{5}{\sqrt[3]{9}}$$

In Exercises 14–22, simplify the expression.

14.
$$\frac{3}{\sqrt{3}}$$

15.
$$\frac{9}{\sqrt{5}}$$

16.
$$\frac{\sqrt{3}}{\sqrt{50}}$$

17.
$$\frac{4}{\sqrt{w}}$$

18.
$$\frac{1}{\sqrt{5t}}$$

19.
$$\sqrt{\frac{2z^2}{7}}$$

20.
$$\frac{1}{\sqrt{6}-1}$$

21.
$$\frac{3}{4+\sqrt{2}}$$

22.
$$\frac{\sqrt{3}}{5-\sqrt{2}}$$

23. The average annual interest rate r (in decimal form) of a savings account is represented by the formula $r = \sqrt{\frac{V_2}{V_0}} - 1$, where V_0 is the initial investment and V_2 is the balance of the account after 2 years. Find the average annual interest rate r of a savings account with an initial investment of \$400 and a balance of \$422 after 2 years.