\qquad

3.6 Practice B

In Exercises 1 and 2, use the graphs of f and g to describe the transformation from the graph of \boldsymbol{f} to the graph of \boldsymbol{g}.

1. $f(x)=-x-3 ; g(x)=f(x+5)$
2. $f(x)=\frac{1}{3} x-2 ; g(x)=f(x-6)$
3. The total cost C (in dollars) to rent a 14 -foot by 20 -foot canopy for d days is given by the function $C(d)=15 d+30$, where the setup fee is $\$ 30$ and the charge per day is $\$ 15$. The setup fee increases by $\$ 20$. The new total cost T is given by the function $T(d)=C(d)+20$. Describe the transformation from the graph of C to the graph of T.

In Exercises 4 and 5, use the graphs of f and h to describe the transformation from the graph of \boldsymbol{f} to the graph of \boldsymbol{h}.
4. $f(x)=-3-x ; h(x)=f(-x)$
5. $f(x)=\frac{1}{3} x+1 ; h(x)=-f(x)$

In Exercises 6 and 7, use the graphs of f and r to describe the transformation from the graph of f to the graph of r.
6. $f(x)=5 x-10 ; r(x)=f\left(\frac{2}{5} x\right)$
7. $f(x)=-\frac{1}{3} x+2 ; r(x)=6 f(x)$

In Exercises 8-11, use the graphs of f and g to describe the transformation from the graph of \boldsymbol{f} to the graph of \boldsymbol{g}.
8. $f(x)=-3 x+5 ; g(x)=f(x-3)$
9. $f(x)=-2 x+6 ; g(x)=f\left(\frac{4}{3} x\right)$
10. $f(x)=4 x-3 ; g(x)=\frac{1}{2} f(x)$
11. $f(x)=-2 x ; g(x)=f(x)+3$

In Exercises 12 and 13, write a function g in terms of f so that the statement is true.
12. The graph of g is a horizontal shrink by a factor of $\frac{2}{3}$ of the graph of f.
13. The graph of g is a horizontal translation 5 units left of the graph of f.

In Exercises 14-17, graph f and h. Describe the transformations from the graph of \boldsymbol{f} to the graph of \boldsymbol{h}.
14. $f(x)=x ; h(x)=-2 x+1$
15. $f(x)=x ; h(x)=\frac{3}{2} x+2$
16. $f(x)=2 x ; h(x)=8 x-3$
17. $f(x)=3 x ; h(x)=-3 x-5$

