\qquad

1.4

Practice A

In Exercises 1-4, simplify the expression.

1. $-|-2|$
2. $|-7|-|7|$
3. $|-3 \cdot 2|$
4. $\left|\frac{-15}{5}\right|$

In Exercises 5-12, solve the equation. Graph the solution(s), if possible.
5. $|r|=5$
6. $|q|=-7$
7. $|b-2|=5$
8. $|k+6|=9$
9. $|-5 p|=35$
10. $\left|\frac{a}{3}\right|=4$
11. $|8 y-3|=13$
12. $|x+4|+7=3$
13. The minimum distance between two fence posts is 4 feet. The maximum distance is 10 feet.
a. Represent these two distances on a number line.
b. Write an absolute value equation that represents the minimum and maximum distances.

In Exercises 14-19, solve the equation. Check your solutions.
14. $|j|=|2 j+3|$
15. $|3 f-6|=|9 f|$
16. $|b+3|=|2 b-2|$
17. $|4 h-2|=2|h+3|$
18. $3|w-5|=|2 w+10|$
19. $|2 y+5|=3 y$
20. Your friend says the absolute value equation $|2 x+9|+7=3$ has two solutions because the constant on the right side of the equation is positive. Is your friend correct? Explain.
21. Describe a real-life situation that can be modeled by an absolute-value equation with the solutions $x=5$ and $x=10$.

